销售电话:025-52890292
025-66910696
销售传真:025-52792236
移动电话:18951086097
邮箱: njyphg@163.com
网址:m5z1j8.jianrencong.cn
技术咨询QQ:77658501
895673768
地址:江苏省南京市江宁经济开发区天元中路126号
邮编: 211100
我国目前混凝土年产量达12~13亿m3,约占世界总产量的40%,面临资源、能源和环境污染的巨大压力。若能用大粒径粗骨料配制工程常用的C30~C50中等强度混凝土(以减少水泥用量),且显著提高其耐久性,将高效缓解压力,关键技术是改善混凝土的水泥浆/粗骨料界面层的性能。水泥浆体与粗骨料粘结强度主要由分子间引力(范德华力)产生[1]。既有改性方法,如在混凝土拌合物中掺入减水剂或矿物掺合料等均可有效提高骨料与水泥浆体间的分子间引力。但应指出使骨料与水泥浆体界面层产生更多的化学键是更佳的途径,因为化学键强度远高于分子间引力。我们曾尝试在花岗岩表面涂抹1%浓度的UP—570硅烷偶联剂溶液,再补新砂浆,结果显示拉拔强度可提高123%[2]。据此,我们猜测在花岗岩/偶联剂/水泥浆界面层中很可能形成化学键接,硅烷偶联剂很可能大幅度改善量大面广的中等强度(C30 C50)大粒径骨料混凝土的性能。故笔者尝试用KH—570硅烷偶联剂溶液浸泡大粒径花岗岩骨料后,再配制混凝土,测试抗压强度,并初步探讨改性机理。
1 试验材料及方案
1.1 试验材料采用525普通硅酸盐水泥;中砂,细度模数为2.54;最大粒径为40mm的花岗岩骨料,骨料级配如表1所示。UP—570硅烷偶联剂配制成1%和2%浓度溶液。
1.2 试验方案混凝土的配比为水泥∶砂∶石∶水=1∶1.57∶3 .66∶0.49。根据对粗骨料处理方法的不同,将试件分为6组如表2所示,每组三个试件,第一组(N)的粗骨料未经处理,第二(P15)、三(P30)、四(P60)组的粗骨料分别用1%浓度的UP 570硅烷偶联剂溶液浸泡15min、30min、60min,第五(P30A)组用2%浓度偶联剂溶液浸泡骨料30min,第六(P30B)组用2%浓度溶液浸泡粒径20~40mm的骨料30分钟。浸泡过后的骨料在自然条件下晾干24h,再按常规方法搅拌混凝土,并做成150mm×150mm×150mm的立方体试件,标准养护28d,进行抗压强度实验。
2 试验结果与分析
2.1 偶联剂溶液浓度和浸泡时间对混凝土强度的影响由表2可见,经1%、2%浓度硅烷偶联剂溶液浸泡过的骨料拌成的混凝土试件(P15、P30、P60、P30A、P30B)的抗压强度均比对比试件(N)高,其中试件P15比N提高18%。在浸泡时间相同情况下,试件P30的抗压强度分别比试件P30A和P30B高5%和10%,可见,低浓度偶联剂溶液效果更佳。对比P15、P30、P60三组试件,可知混凝土抗压强度随着骨料浸泡时间的增长而降低。P60尽管采用了1%浓度溶液,但因浸泡时间长,其抗压强度仍低于P30A。
2.2 骨料粒径影响一般认为粒径≤20mm的骨料对普通混凝土的强度影响很小[1],但对试件P30B,只浸泡了粒径20~40mm的骨料,结果显示其抗压强度比试件P30A低4.2%。这说明粒径5~20mm的骨料经硅烷偶联剂溶液处理过后,也对提高混凝土的抗压强度有贡献。
2.3 水泥浆 花岗岩骨料界面层的偶联机理初探如图1所示,根据偶联剂化学[3,4]和混凝土材料学[1],笔者认为水泥浆体与花岗岩骨料之间很可能以如下方式形成化学键。将硅烷偶联剂溶液涂于花岗岩表面后,溶液中的单体和低聚物与花岗岩中的羟基形成氢键,其后在干燥条件(如涂溶液后放置24h)下脱水,硅烷中的硅原子与花岗岩中的硅原子形成一个硅氧硅键(Si—O—Si),余下的两个硅醇基可与另外的偶联剂成键,或者成游离形式。
如用花岗岩骨料与化学活性很强的水泥浆拌制成混凝土,由于水泥浆体富含羟基,可能与硅醇中游离的硅羟基形成氢键,并随着水泥浆的不断水化、干燥,有一部分氢键脱水形成化学键,从而实现了水泥浆体与花岗岩这两种无机材料界面层的化学键接(如图2),即Si—O—Si—O—Si。根据偶联剂化学[3~5],溶液浓度太低或浸泡时间过短,则硅烷偶联剂不能完全包裹骨料;浓度太高或浸泡时间过长,则硅烷偶联剂溶液中的齐聚物就会增多,将导致可与水泥浆形成Si—O—Si键的硅羟基数减少(参见图1,2),甚至形成物理吸附的多分子层[5]。本研究中,溶液浓度为2%和l%浓度浸泡时间60min均效果不佳,很可能是溶液浓度太高、浸泡时间过长所至。
3 结语用硅烷偶联剂处理骨料后再拌混凝土,可以使混凝土的抗压强度有较大幅度的提高。在日后的工作中应该着重研究硅烷偶联剂溶液的合理浓度和浸泡骨料的合理时间,以更大幅度提高改性效果。